Embryonic motor activity and implications for regulating motoneuron axonal pathfinding in zebrafish
نویسندگان
چکیده
Zebrafish embryos exhibit spontaneous contractions of the musculature as early as 18-19 h post fertilization (hpf) when removed from their protective chorion. These movements are likely initiated by early embryonic central nervous system activity. We have made the observation that narrowminded mutant embryos (hereafter, nrd(-/-)) lack normal embryonic motor output upon dechorionation. However, these mutants can swim and respond to tactile stimulation by larval stages of development. nrd(-/-) embryos exhibit defects in neural crest development, slow muscle development and also lack spinal mechanosensory neurons known as Rohon-Beard (RB) neurons. At early developmental stages (i.e. 21-22 hpf) and while still in their chorions, nrd siblings (nrd(+/?)) exhibited contractions of the musculature at a rate similar to wild-type embryos. Anatomical analysis indicated that RB neurons were present in the motile embryos, but absent in the non-motile embryos, indicating that the non-motile embryos were nrd(-/-) embryos. Further anatomical analysis of nrd(-/-) embryos revealed errors in motoneuron axonal pathfinding that persisted into the larval stage of development. These errors were reversed when nrd(-/-) embryos were raised in high [K(+)] beginning at 21 hpf, indicating that the abnormal axonal phenotypes may be related to a lack of depolarizing activity early in development. When activity was blocked with tricaine in wild-type embryos, motoneuron phenotypes were similar to the motoneuron phenotypes in nrd(-/-) embryos. These results implicate early embryonic activity in conjunction with other factors as necessary for normal motoneuron development.
منابع مشابه
Secondary motoneurons in juvenile and adult zebrafish: Axonal pathfinding errors caused by embryonic nicotine exposure
Nicotine is a drug of abuse that has been reported to have many adverse effects on the developing nervous system. We previously demonstrated that embryonic exposure to nicotine alters axonal pathfinding of spinal secondary motoneurons in zebrafish. We hypothesize that these changes will persist into adulthood. The Tg(isl1:GFP) line of zebrafish, which expresses green fluorescent protein (GFP) i...
متن کاملMotoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure
Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15-30 μM). Previous work showed that th...
متن کاملNicotinic receptors mediate changes in spinal motoneuron development and axonal pathfinding in embryonic zebrafish exposed to nicotine.
We show that transient exposure of embryonic zebrafish to nicotine delays the development of secondary spinal motoneurons. Furthermore, there is a long-lasting alteration in axonal pathfinding in secondary motoneurons that is not ameliorated by drug withdrawal. These effects of nicotine were reversed by mammalian nicotinic receptor antagonists. Coupled with these changes is a long-term alterati...
متن کاملIdentified primary motoneurons in embryonic zebrafish select appropriate pathways in the absence of other primary motoneurons.
Accurate pathfinding is a crucial step in formation of a functional nervous system. Individually identified zebrafish primary motoneurons undergo a stereotyped temporal sequence of axonal outgrowth and pathway selection during which their growth cones follow a common pathway to a "choice point" and then select divergent cell-specific pathways that lead to separate muscle territories. The charac...
متن کاملKnockdown of Nav1.6a Na+ channels affects zebrafish motoneuron development.
In addition to rapid signaling, electrical activity provides important cues to developing neurons. Electrical activity relies on the function of several different types of voltage-gated ion channels. Whereas voltage-gated Ca2+ channel activity regulates several aspects of neuronal differentiation, much less is known about developmental roles of voltage-gated Na+ channels, essential mediators of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 28 شماره
صفحات -
تاریخ انتشار 2008